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Abstract—Parallel scalability allows an application to effi-
ciently utilize an increasing number of processing elements. In
this paper we explore a design space for application scalability
for an inference engine in large vocabulary continuous speech
recognition (LVCSR). Our implementation of the inference en-
gine involves a parallel graph traversal through an irregular
graph-based knowledge network with millions of states and
arcs. The challenge is not only to define a software architecture
that exposes sufficient fine-grained application concurrency, but
also to efficiently synchronize between an increasing number of
concurrent tasks and to effectively utilize the parallelism oppor-
tunities in today’s highly parallel processors. We propose four
application-level implementation alternatives we call “algorithm
styles”, and construct highly optimized implementations on two
parallel platforms: an Intel Core i7 multicore processor and a
NVIDIA GTX280 manycore processor. The highest performing
algorithm style varies with the implementation platform. On 44
minutes of speech data set, we demonstrate substantial speedups
of 3.4× on Core i7 and 10.5× on GTX280 compared to a highly
optimized sequential implementation on Core i7 without sacri-
ficing accuracy. The parallel implementations contain less than
2.5% sequential overhead, promising scalability and significant
potential for further speedup on future platforms.

I. INTRODUCTION

We have entered a new era where sequential programs can
no longer fully exploit Moore’s Law and expect a doubling in
performance every 18-24 months [1]. Parallel scalability, the
ability for an application to efficiently utilize an increasing
number of processing elements, is now required for software
to obtain sustained performance improvements on successive
generations of processors.

Many modern signal processing applications are evolving to
incorporate recognition backends that have significant scala-
bility challenges. We examine the scalability challenges in im-
plementing a Hidden-Markov-Model (HMM) based inference
algorithm in a large-vocabulary-continuous-speech-recognition
(LVCSR) application.

A LVCSR application analyzes a human utterance from a
sequence of input audio waveforms to interpret and distinguish
the words and sentences intended by the speaker. Its top
level architecture is shown in Fig. 1. The recognition process
uses a recognition network, which is a language database
that is compiled offline from a variety of knowledge sources
using powerful statistical learning techniques. The speech
feature extractor collects discriminant feature vectors from
input audio waveforms. Then the inference engine computes
the most likely word sequence based on the extracted speech
features and the recognition network. In the LVCSR system
the common speech feature extractors can be parallelized using

!"#$%&'&

!"#$%&(&

!"#$%&)&

*+%&,-%.#/0+&

1%.&/2%&$-%13&
&&&&&45678&,+$-9&

*:$&1.0:&;021<-%&

=0+>%1$&-.#?%.$#@&

A1$,@0+&-.#?%.$#@&

8<@/1@%&$-%1$&,+&#&

1"#$%B&%#;"&"#$3&

&&'777$&-0&'7B777$&&

&&;0+;<..%+-&-#$C$&

&&4'7&-0&D77&,+$-.E9&&

F.;",-%;-<.%&0G&-"%&,+G%.%+;%&%+H,+%3&

I1%%;"&

J%#-<.%&

AK-.#;-0.&

L+G%.%+;%&&

A+H,+%&

!"#$%&

'()*+&

,%$"-(#."(&/%+0"12&

3)%%$4&

5%6+*1%7&
8"19&

3%:*%($%&

M
&

I think  

therefore   

I am 

F;0<$/;&

80N%@&

!.0+<+;,#/0+&

80N%@&

O#+H<#H%&

80N%@&

Fig. 1. Architecture of large vocabulary continuous speech recognition

standard signal processing techniques [2], [3]. This paper
discusses the well-known parallelization challenges for graph
traversal [4] in the context of the inference engine [5].

A parallel inference engine traverses a graph-based knowl-
edge network consisting of millions of states and arcs. As
shown in Fig. 1, it uses the Viterbi search algorithm to iterate
through a sequence of input audio feature one time step at
a time. The Viterbi search algorithm keeps track of each
alternative interpretation as a sequence of states ending in an
active state at the current time step and evaluates out-going
arcs based on the current-time-step observation to arrive at
the set of active states for the next time step. In each time
step, it executes in three phases of algorithm steps, keeping
track of tens of thousands of alternative interpretations of a
speech utterance to select the most likely word sequence [6].
Phase 1 is a compute-intensive phase, and phase 2 and 3
are communication intensive phases. There are significant
parallelism opportunities in concurrently evaluating the alter-
native interpretations of a speech utterance in each algorithm
step. However, the inference engine involves a parallel graph
traversal through an irregular graph-based knowledge network
with millions of states and arcs. It is guided by a sequence
of input audio features that continuously changes the data
working set at runtime. The challenge is not only to define a
software architecture that exposes sufficient fine-grained appli-
cation concurrency, but also to efficiently synchronize between
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Fig. 2. The algorithmic level design space for graph traversal scalabiliy analysis for the inference engine

an increasing number of concurrent tasks and to effectively
utilize the parallelism opportunities in today’s highly parallel
processors.

We explore two important parallelization challenges for
graph traversal in the context of an inference engine: efficient
synchronization between concurrent tasks and effective utiliza-
tion of Single-Instruction-Multiple-Data (SIMD) parallelism.
We propose two application-level implementation alternatives
for each of the parallelization challenges and compose them to
arrive at a design space of four unique algorithm styles . We
construct highly optimized implementations of the algorithm
styles on two parallel platforms: an Intel Core i7 multicore
processor and a NVIDIA GTX280 manycore processor, and
present our results here.

II. RELATED WORK

Speech recognition is a challenging computational problem
that has attracted many researchers. We highlight related work
in software-based acceleration in three categories.

Category 1: Data Parallel, multiprocessor shared memory
implementation on multi-processor clusters [7], [8]. These
implementations are plagued by high communication overhead
in the platform, high sequential overhead in the software
architecture, load imbalance among parallel tasks or excessive
memory bandwidth requirement, thus limiting the scalability
to more parallel platforms. In [9], some of these issues were
resolved by using OpenMP as an implementation platform,
however, it was based on the tree-lexicon search network, a
less efficient approach than the WFST-based approach [10]
used in this paper.

Category 2: Task parallel implementation. Ishikawa et
al. [11] exploited pipelined task-level parallelism on three
ARM cores. Here, scaling requires extensive redesign effort.

Category 3: Data Parallel implementation on manycore
accelerator in CPU-based host system [12], [13], [14]. [12],
[13] focused on speeding up the compute intensive phase, but
left the communication intensive phases on the host platform,
limiting their scalability. [14] leveraged the simpler structure
of a linear-lexicon based recognition network to achieve a 9×
speedup compared to a SIMD optimized sequential implemen-
tation. It is less efficient than the WFST-based approach.

In contrast, we optimize our software architecture, accom-
plishing additional speedup in the computation intensive phase

on the manycore accelerator, and computing the communica-
tion intensive phases in parallel on the multicore and many-
core processors. We explore multiple scalable synchronization
methods, while traversing the more challenging WFST-based
recognition network.

III. ALGORITHM STYLES OF THE INFERENCE ENGINE

Given the challenging and dynamic nature of the underlying
graph-traversal routines in LVCSR, implementing it on paral-
lel platforms presents two architectural challenges: efficient
SIMD utilization and efficient core level synchronization.
These challenges are key factors in making the algorithms
scalable to increasing number of cores and SIMD lanes. To
find a solution to these challenges we explore two aspects
of the algorithmic level design space: the graph traversal
technique and the arc transition evaluation granularity. Our
design space is shown in Fig. 2a.

A. Traversal Techniques: Aggregate or Propagate

The two graph traversal techniques are traversal by propaga-
tion and traversal by aggregation. During the graph traversal
process, each arc has a source state and a destination state.
Traversal by propagation organizes the traversal process at
the source state. It evaluates the outgoing arcs of the active
states and propagates the result to the destination states. As
multiple arcs may be writing their result to the same desti-
nation state, this technique requires write conflict resolution
support in the underlying platform. The programmer declares
certain memory operations as atomic, and the implementation
platform resolves the potential write conflicts.

Traversal by aggregation organizes the traversal process
around the destination state. The destination states update their
own information by performing a reduction on the evaluation
results of their incoming arcs. The programmer explicitly
manages the potential write conflicts by using additional
algorithmic steps such that no write-conflict-resolution support
is required in the underlying platform.

The choice of the traversal technique has direct implications
on the cost of core level synchronization. Efficient synchro-
nization between cores reduces the management overhead of
a parallel algorithm and allows the same problem to gain
additional speedups as we scale to more cores. Fig. 2b outlines



the trade-offs in the total cost of synchronization between
the aggregation technique and the propagation technique. The
qualitative graph shows increasing synchronization cost with
increasing number of concurrent states or arcs evaluated.

The fixed cost for the aggregation technique (Y-intercept
of line (a) in Fig. 2b) is higher than that of the propagation
technique, as it requires a larger data structure and a more
complex set of software routines to manage potential write
conflicts. The relative gradient of the aggregation and propa-
gation techniques depends on the efficiency of the platform
in resolving potential write conflicts. If efficient hardware-
supported atomic operations are used, the variable cost for
each additional access would be small, and the propagation
technique should scale as line (b) in Fig. 2b. If there is
no hardware support for atomic operations, and sophisticated
semaphores and more expensive software-based locking rou-
tines are used, the propagation technique would scale as line
(c). In addition, if the graph structure creates a scenario where
many arcs are contenting to write to a small set of next
states, serialization bottleneck may appear and the propagation
technique could scale as line (d).

In order to minimize the synchronization cost for a given
problem size, we need to choose the approach corresponding
to the lowest-lying line in Fig. 2b. For small number of active
states or arcs, we should choose the propagation technique.
For larger number of arcs, however, the choice is highly
dependent on the application graph structure and the write-
conflict-resolution support in the underlying implementation
platform.

B. Evaluation Granularity: Arc-Based or State-Based
We also explore two recognition network evaluation gran-

ularities: state-based evaluation and arc-based evaluation. In
a parallel implementation we must define units of work (or
tasks) that can be done concurrently. State-based evaluation
defines a unit of work as the evaluation of all outgoing or
incoming arcs associated with a state, with the majority of
states having one or two outgoing or incoming arcs. Arc-based
evaluation defines a unit of work as the evaluation of a single
arc. The fine granularity of tasks allows the workload to scale
to increasingly parallel implementation platforms. Each fine-
grained task, however, has little instruction-level parallelism
and can not fully utilizing a growing number of SIMD lanes
in a core. We must efficiently map tasks to SIMD lanes to gain
higher SIMD utilization, such that the algorithm can scale to
even wider SIMD units in future processors.

SIMD operations improve performance by executing the
same operation on a set of data elements packed into a
contiguous vector. Thus, SIMD efficiency is highly dependent
on the ability of all lanes to synchronously execute useful
instructions. When all lanes are fully utilized for an operation,
we call the operation “coalesced”. When operations do not
coalesce, the SIMD unit becomes under-utilized.

For the state-based approach, we see in Fig. 2c that the
control flow diverges as some lanes are idle, while others are
doing useful work. In our recognition network, the number
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Fig. 3. Ratio of computation intensive phase of the algorithm vs communi-
cation intensive phase of the algorithm

of outgoing arcs of the active states ranges from 1 to 897.
The bar chart in Fig. 2d shows that the state-based evaluation
granularity incurs significant penalties with increasing SIMD
width. A 32-wide SIMD achieves only 10% utilization and
gets only a 3.3× speedup over a sequential version.

We can eliminate this kind of control flow divergence by
using the arc-based approach, as each arc evaluation presents
a constant amount of work. However, such fully coalesced
control flow requires extra storage overhead. In order for each
arc evaluation to be an independent task, the arc must have a
reference to its source state. We must store this information for
every arc we evaluate. For a small SIMD width, this overhead
may eliminate any gains from coalesced control flow.

IV. EVALUATION OF THE INFERENCE ENGINE

We explore the traversal techniques and evaluation gran-
ularities on two hardware platforms: the Intel Core i7 920
multicore processor with 6GB memory and the NVIDIA
GTX280 manycore processor with a Core2 Quad based host
system with 8GB host memory and a GTX280 graphics card
with 1GB of device memory. The Core i7 was programmed
using the task queue abstraction [15], and the GTX280 was
programmed using CUDA [16]. The results are shown in
Table II.

Fig. 3 highlights the growing importance of optimizing
the communication intensive phases on parallel platforms.
Over 80% of the time in the sequential implementation is
spent in the compute intensive phases of the application.
While the compute intensive phase achieved a 4-20× speedup
in our highly parallel implementations, the communication
intensive phases incurred significant overhead in managing
the parallelism. Even with a respectable 3× speedup, the
communication intensive phases became proportionally more
dominant, taking 49% of total runtime in the manycore im-
plementation. This motivates the need to examine in detail the
parallelization issues in the communication intensive phases of
our inference engine. We mainly analyze its synchronization
efficiency and effectiveness of using SIMD parallelism.

TABLE I
ACCURACY, WORD ERROR RATE (WER), FOR VARIOUS BEAM SIZES AND

CORRESPONDING DECODING SPEED IN REAL-TIME FACTOR (RTF)

Avg. # of Active States 32820 20000 10139 3518
WER 41.6 41.8 42.2 44.5

Sequential 4.36 3.17 2.29 1.20
RTF Multicore 1.23 0.93 0.70 0.39

Manycore 0.40 0.30 0.23 0.18

The speech models were taken from the SRI CALO real-
time meeting recognition system [17], trained using the data



TABLE II
RECOGNITION PERFORMANCE NORMALIZED FOR ONE SECOND OF SPEECH FOR DIFFERENT ALGORITHM STYLES WITH AVERAGE OF 20,000 ACTIVE

STATES EACH ITERATION. SPEEDUP REPORTED OVER SIMD-OPTIMIZED SEQUENTIAL VERSION. RESULTS EXPLAINED ARE IN BOLD.

Core i7 Core i7 GTX280
Sequential Prop. Prop. Aggr. Prop. Prop. Aggr. Aggr.

Seconds (%) Prop. by states by states by arcs by states by states by arcs by states by arcs
Phase 1 2.623 (83%) 0.732 (79%) 0.737 (73%) 0.754 (29%) 0.148 (19%) 0.148 (49%) 0.147 (12%) 0.148 (16%)
Phase 2 0.474 (15%) 0.157 (17%) 0.242 (24%) 1.356 (52%) 0.512 (66%) 0.103 (34%) 0.770 (64%) 0.469 (51%)
Phase 3 0.073 ( 2%) 0.035 (4%) 0.026 (3%) 0.482 (19%) 0.108 (15%) 0.043 (14%) 0.272 (23%) 0.281 (31%)
Sequential Overhead - 0.001 0.001 0.001 0.008(1.0%) 0.008(2.5%) 0.014(1.2%) 0.014(1.6%)
Total 3.171 0.925 1.007 2.593 0.776 0.301 1.203 0.912
Speedup 1 3.43 3.15 1.22 4.08 10.53 2.64 3.48

and methodology developed for the SRI-ICSI NIST RT-07
evaluation [18]. The acoustic model includes 128-component
Gaussians. The pronunciation model contains 59K words and
80K pronunciations. The recognition network contains 4.1M
states and 9.8M arcs and is composed using WFST techniques.

The test set consisted of 44 minutes of segmented audio
from 10 speakers in NIST conference meetings. The recogni-
tion task is very challenging due to the spontaneous nature
of the speech. The ambiguities in the sentences require a
larger number of active states to keep track of alternative
interpretations which leads to slower recognition speed.

As shown in Table I, the multicore and manycore im-
plementations can achieve significant speedup for the same
number of active states. More importantly, for the same real
time factor (RTF), parallel implementations provide a higher
recognition accuracy. For example, for an RTF of 0.4, accuracy
improves from 44.5% to 41.6% WER going from a multicore
implementation to manycore implementation.

Our implementations are structured to be scalable. As shown
in Table II the sequential overhead in our implementations
was measured to be less than 2.5% even for the fastest
implementation. Also seen in Table II, the fastest algorithm
style differed for each platform. Synchronization using the
aggregation technique has an overwhelming overhead, despite
using highly optimized software routines. The propagation
technique, in comparison, had strictly better results. However,
our first propagation implementation on GTX280 using global
atomic operations had severe atomic-memory-access conflicts
and performed worse than Core i7. The issue was resolved by
using local atomics operations [16].

The GTX280 has a logical SIMD width of 32. The imple-
mentation on GTX280 benefited significantly from evaluation
by arc, re-gaining the lost efficiencies seen in Fig. 2d, making
propagation by arc the fastest algorithm style. However, SIMD
has not been applied to the implementation on Core i7, since
the overhead of coalescing control flow exceeds the benefit
comes from 4-wide SIMD. Thus, the fastest algorithmic style
on Core i7 was propagation by state.

V. CONCLUSIONS
We explored two important aspects of the algorithmic level

design space for application scalability to account for differing
support and efficiency of concurrent task synchronization
and SIMD utilization on multicore and manycore platforms.
While we achieved significant speedups compared to highly
optimized sequential implementation: 3.4× on an Intel Core

i7 multicore processor and 10.5× on a GTX280 NVIDIA
manycore processor, the fastest algorithm style differed for
each platform. Application developers must take into account
underlying hardware architecture features such as synchro-
nization operations and the SIMD width when they design
algorithm for parallel platforms.

Automatic speech recognition is a key technology for en-
abling rich human-computer interaction in emerging appli-
cations. Parallelizing its implementation is crucial to reduce
recognition latency, increase recognition accuracy, enabling
the handling more complex language models under time
constrains. We expect that an efficient speech recognition
engine will be an important component in many exciting new
applications to come.

REFERENCES

[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,
D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick,
“The landscape of parallel computing research: A view from Berkeley,” EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2006-183,
Dec 2006.

[2] A. Obukhov and A. Kharlamov, “Discrete cosine transform for 8x8 blocks with
CUDA,” NVIDIA white paper, October 2008.

[3] V. Podlozhnyuk, “FFT-based 2D convolution,” NVIDIA white paper, June 2007.
[4] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry, “Challenges in parallel

graph processing,” Parallel Processing Letters, 2007.
[5] A. Janin, “Speech recognition on vector architectures,” Ph.D. dissertation, Univer-

sity of California, Berkeley, Berkeley, CA, 2004.
[6] H. Ney and S. Ortmanns, “Dynamic programming search for continuous speech

recognition,” IEEE Signal Processing Magazine, vol. 16, pp. 64–83, 1999.
[7] M. Ravishankar, “Parallel implementation of fast beam search for speaker-

independent continuous speech recognition,” 1993.
[8] S. Phillips and A. Rogers, “Parallel speech recognition,” Intl. Journal of Parallel

Programming, vol. 27, no. 4, pp. 257–288, 1999.
[9] K. You, Y. Lee, and W. Sung, “OpenMP-based parallel implementation of a

continous speech recognizer on a multi-core system,” in Proc. IEEE Intl. Conf.
on Acoustics, Speech, and Signal Processing (ICASSP), Taipei, Taiwan, 2009.

[10] M. Mohri, F. Pereira, and M. Riley, “Weighted finite state transducers in speech
recognition,” Computer Speech and Language, vol. 16, pp. 69–88, 2002.

[11] S. Ishikawa, K. Yamabana, R. Isotani, and A. Okumura, “Parallel LVCSR algo-
rithm for cellphone-oriented multicore processors,” in Proc. IEEE Intl. Conf. on
Acoustics, Speech, and Signal Processing (ICASSP), Toulouse, France, 2006.

[12] P. R. Dixon, T. Oonishi, and S. Furui, “Fast acoustic computations using graphics
processors,” in Proc. IEEE Intl. Conf. on Acoustics, Speech, and Signal Processing
(ICASSP), Taipei, Taiwan, 2009.

[13] P. Cardinal, P. Dumouchel, G. Boulianne, and M. Comeau, “GPU accelerated
acoustic likelihood computations,” in Proc. Interspeech, 2008.

[14] J. Chong, Y. Yi, N. R. S. A. Faria, and K. Keutzer, “Data-parallel large vocabulary
continuous speech recognition on graphics processors,” in Proc. Intl. Workshop on
Emerging Applications and Manycore Architectures, 2008.

[15] S. Kumar, C. J. Hughes, and A. Nguyen, “Carbon: Architectural support for fine-
grained parallelism on chip multiprocessors,” in Proc. Intl. Symposium on Computer
Architecture (ISCA), 2007.

[16] NVIDIA CUDA Programming Guide, NVIDIA Corporation, 2009, version 2.2
beta. [Online]. Available: http://www.nvidia.com/CUDA

[17] G. T. et al, “The CALO meeting speech recognition and understanding system,”
in Proc. IEEE Spoken Language Technology Workshop, 2008, pp. 69–72.

[18] A. Stolcke, X. Anguera, K. Boakye, O. Cetin, A. Janin, M. Magimai-Doss,
C. Wooters, and J. Zheng, “The SRI-ICSI spring 2007 meeting and lecture
recognition system,” Lecture Notes in Computer Science, vol. 4625, no. 2, pp.
450–463, 2008.


